CRO Course Level 2

Welcome to the ultimate A/B testing guide!

In this post, I’m going to cover everything you need to know about A/B testing (also referred to as “split” testing), from start to finish. Here’s what we’ll cover:

  1. The Basics Components Of A/B Testing
  2. The Proven AB Testing Framework
  3. The Critical Statistics Behind Split Testing
  4. How To Conduct Pre-Test Research
  5. How To Create An A/B Testing Strategy
  6. “AB” & “Split” Testing Versus “Multivariate” Testing
  7. How To Analyze Testing Results
  8. How AB Testing Tools Work
  9. How To Build An A/B Testing Team

By the end of this guide, you’ll have a thorough understanding of the entire AB testing process and a framework for diving deeper into any topic you wish to further explore.

In addition to this guide, we’ve put together an intuitive 9-part course taking you through the fundamentals of conversion rate optimization. Complete the course, and we’ll review your website for free!

 

The Conversion Sciences CRO Crash Course

Earn your Ph.D. in conversion optimization via our 9-part CRO crash course.

 

1. The Basic Components Of A/B Testing

AB testing, also referred to as “split” or “A/B/n” testing, is the process of testing multiple variations of a web page in order to identifying higher performing variations and improve the page’s conversion rate.

 

Over the last few years, AB testing has become “kind of a big deal”.

Online marketing tools have become more sophisticated and less expensive, making split testing a more accessible pursuit for small and mid-sized businesses. And with traffic becoming more expensive, the rate at which online businesses are able to convert incoming visitors is becoming more and more important. 

The basic A/B testing process looks like this:

  1. Make a hypothesis about one or two changes you think will improve the page’s conversion rate.
  2. Create a variation or variations of that page with one change per variation.
  3. Divide incoming traffic equally between each variation and the original page.
  4. Run the test as long as it takes to acquire statistically significant findings.
  5. If a page variation produces a statistically significant increase in page conversions, use it it replace the original page.
  6. Repeat

Have you ever heard the story of someone changing their button color from red to green and received a $5 million increase in sales that year?

As cool as that sounds, let’s be honest: it is not likely that either you or I will see this kind of a win anytime soon. That said, one button tweak did result in $300 million in new revenue for one business, so it is possible.

AB testing is a scientific way of finding out if your tweak that leads to a boost in conversions is actually significant, or just a random flux.

AB testing (AKA “split testing”) is the process of directing your traffic to two or more variations of a web page.

AB testing is pretty simple to understand:

A typical AB test uses AB testing software to divide traffic.

A typical AB test uses AB testing software to divide traffic.

Our testing software is the “Moses” that splits our traffic for us. Additionally, you can choose to experiment with more variations than an AB test. These tests are called A/B/n tests, where “n” represents any number of new variations.

The goal of AB testing is to measure if a variation results in the more conversions.

The goal of AB testing is to measure if a variation results in the more conversions.

So that could be an “A/B/C” test, an “A/B/C/D” test, and so on.

Here’s what an A/B/C test would look like:

The more variations we have in an AB test, the more we have to divide the traffic.

The more variations we have in an AB test, the more we have to divide the traffic.

Even though the same traffic is sent to the Control and each Variation, a different number of visitors will typically complete their task — buy, signup, subscribe, etc. This is because a many leave your site first.

We research our visitors to find out what might be making them leave before converting. These are our test hypotheses.

We research our visitors to find out what might be making them leave before converting. These are our test hypotheses.

The primary point of an AB test is to discover what issues cause visitors to leave. The issues above are common to ecommerce websites. In this case we might create additional variations:

  1. One that adds a return policy to the page.
  2. One that removes the registration requirement.
  3. One that adds trust symbols to the site.

By split testing these changes, we see if we can get more of these visitors to finish their purchase, to convert.

How do we know which issues might be causing visitors leave? This is done by researching your visitors, looking at analytics data, and making educated guesses, which we at Conversion Sciences call “hypotheses”.

In this example, adding a return policy performed best. Removing the registration requirement performed worse than the Control.

In this example, adding a return policy performed best. Removing the registration requirement performed worse than the Control.

In the image above, the number of visitors that complete a transaction is shown. Based on this data, we would learn that adding a return policy and trust symbols would increase success over the Control or removing registration.

The page that added the return policy is our new Control. Our next test would very likely be to see what happens when we add trust symbols to this new Control. It is not unlikely that combining the two could actually reduce the conversion rate. So we test it.

Likewise, it is possible that removing the registration requirement would work well on the page with the return policy, our new Control. However, we may not test this combination.

With an AB test, we try each change on it’s own variation to isolate the specific issues and decide which combinations to test based on what we learn.

The goal of AB testing is to identify and verify changes that will increase a page’s overall conversion rate, whether those changes are minor or more involved.

I’m fond of saying that AB testing, or split testing, is the “Supreme Court” of data collection. An AB test gives us the most reliable information about a change to our site. It controls for a number of variables that can taint our data.

2. The Proven AB Testing Framework

Now that we have a feel for the tests themselves, we need to understand how these tests fit into the grand scheme of things.

There’s a reason we are able to get consistent results for our clients here at Conversion Sciences. It’s because we have a proven framework in place: a system that allows us to approach any website and methodically derive revenue-boosting insights.

Different businesses and agencies will have their own unique processes within this system, but any CRO agency worth it’s name will follow some variation of the following framework when conducting A/B testing.

AB Testing Framework Infographic

 

For a closer look at each of these nine steps, check out our in-depth breakdown here: The Proven AB Testing Framework Used By CRO Professionals

3. The Critical Statistics Behind Split Testing

You don’t need to be a mathematician to run effective AB tests, but you do need a solid understanding of the statistics behind split testing.

An AB test is an example of statistical hypothesis testing, a process whereby a hypothesis is made about the relationship between two data sets and those data sets are then compared against each other to determine if there is a statistically significant relationship or not.

To put this in more practical terms, a prediction is made that Page Variation #B will perform better than Page Variation #A, and then data sets from both pages are observed and compared to determine if Page Variation #B is a statistically significant improvement over Page Variation #A.

That seems fairly straightforward, so where does it get complicated?

The complexities arrive in all the ways a given “sample” can inaccurately represent the overall “population”, and all the things we have to do to ensure that our sample can accurately represent the population.

Let’s define some terminology real quick.

Image showing a population of people and two samples with differing numbers of people. This difference is variance.

Population and Variance.

While it appears that one version is doing better than the other, the results overlap too much.

While it appears that one version is doing better than the other, the results overlap too much.

The “population” is the group we want information about. It’s the next 100,000 visitors in my previous example. When we’re testing a webpage, the true population is every future individual who will visit that page.

The “sample” is a small portion of the larger population. It’s the first 1,000 visitors we observe in my previous example.

In a perfect world, the sample would be 100% representative of the overall population.

For example:

Let’s say 10,000 out of those 100,000 visitors are going to ultimately convert into sales. Our true conversion rate would then be 10%.

In a tester’s perfect world, the mean (average) conversion rate of any sample(s) we select from the population would always be identical to the population’s true conversion rate. In other words, if you selected a sample of 10 visitors, 1 of them (10%) would buy, and if you selected a sample of 100 visitors, then 10 would be buy.

But that’s not how things work in real life.

In real life, you might have only 2 out of the first 100 buy or you might have 20… or even zero. You could have a single purchase from Monday through Friday and then 30 on Saturday.

This variability across samples is expressed as a unit called the “variance”, which measures how far a random sample can differ from the true mean (average).

This variance across samples can derail our findings, which is why we have to employ statistically sound hypothesis testing in order get accurate results.

For example:

How AB Testing Eliminates Timing Issues

One alternative to AB testing is “serial” testing, or change-something-and-see-what-happens testing. I am a fan of serial testing, and you should make it a point to go and see how changes are affecting your revenue, subscriptions and lead.

There is a problem, however. If you make your change at the same time that a competitor starts an awesome promotion, you may see a drop in your conversion rates. You might blame your change when, in fact, the change in performance was an external market force.

AB testing controls for this.

In an AB test, the first visitor sees the original page, which we call the Control. This is the “A” in the term “AB test”.The next visitor sees a version of the page with the change that’s being tested. We call this a Treatment, or Variation. This is the “B” in the term AB test. We can also have a “C” and a “D” if we have enough traffic.

The next visitor sees the control and the next the treatment. This goes on until we enough people have seen each version to tell us which they like best. We call this statistical significance. Our software tracks these visitors across multiple visits and tells us which version of the page generated the most revenue or leads.

Since visitors come over the same time period, changes in the marketplace — like our competitor’s promotion — won’t affect our results. Both pages are served during the promotion, so there is no before-and-after error in the data.

Another way variance can express itself is in the way different types of traffic behave differently. Fortunately, you can eliminate this type of variance simply by segmenting traffic.

How Visitor Segmentation Controls For Variability

An AB test gathers data from real visitors and customers who are “voting” on our changes using their dollars, their contact information and their commitment to our offerings. If done correctly, the makeup of visitors should be the same for the control and each treatment.

This is important. Visitors that come to the site from an email may be more likely to convert to a customer. Visitors coming from organic search, however, may be early in their research, with not as many ready to buy.

If you sent email traffic to your control and search traffic to the treatment, it may appear that the control is a better implementation. In truth, it was the kind of traffic or traffic segment that resulted in the different performance.

By segmenting types of traffic and testing them separately, you can easily control for this variation and get a much better understanding of visitor behavior.

Why Statistical Significance Is Important

One of the most important concepts to understand when discussing AB testing is statistical significance, which is ultimately all about using large enough sample sizes when testing. There are many places where you can acquire a more technical understanding of this concept, so I’m going to attempt to illustrate it instead in layman’s terms.

Imagine flipping a coin 50 times. While from a probability perspective, we know there is a 50% chance of any given flip landing on heads, that doesn’t mean we will get 25 heads and 25 tails after 50 flips. In reality, we will probably see something like 23 heads and 27 tails or 28 heads and 22 tails.

Our results won’t match the probability because there is an element of chance to any test – an element of randomness that must be accounted for. As we flip more times, we decrease the effect this chance will have on our end results. The point at which we have decreased this element of chance to a satisfactory level is our point of statistical significance.

In the same way, when running an AB tests on a web page, there is an element of chance involved. One variation might happen to receive more primed buyers than the other or perhaps an isolated group of visitors happen to have a negative association with an image used on one page. These chance factors will skew your results if your sample size isn’t large enough.

While it appears that one version is doing better than the other, the results overlap too much.

While it appears that one version is doing better than the other, the results overlap too much.

It’s important not to conclude an AB test until you have reach statistically significant results. Here’s a handy tool to check if your sample sizes are large enough.

For a closer look at the statistics behind A/B testing, check out this in-depth post: AB Testing Statistics: An Intuitive Guide For Non-Mathematicians

4. How To Conduct Pre-Test Research

The definition of optimization boils down to understanding your visitors.

In order to succeed at A/B testing, we need to be creating variations that perform better for our visitors. In order to create those types of variations, we need to understand what visitors aren’t liking about our existing site and what they want instead.

Aka we need research.

Conversion Research Evidence with Klientboost Infographic

For a close look at each of these sections, check out our full writeup here: AB Testing Research: Do Your Conversion Homework

5. How To Create An A/B Testing Strategy

Once we’ve done our homework and identified both problem areas and opportunities for improvement on our site, it’s time to develop a core testing strategy.

An A/B testing strategy is essentially a lens through which we will approach test creation. It helps us prioritize and focus our efforts in the most productive direction possible.

There are 7 primary testing strategies that we use here at Conversion Sciences.

  1. Gum Trampoline
  2. Completion Optimization
  3. Flow Optimization
  4. Minesweeper
  5. Big Rocks
  6. Big Swings
  7. Nuclear Option

Since there is little point in summarizing these, click here to read our breakdown of each strategy: The 7 Core Testing Strategies Essential To Optimization

6. “AB” & “Split” Testing Versus “Multivariate” Testing

While most marketers tend to use these terms interchangeably, there are a few differences to be aware of. While AB testing and split testing are the exact same thing, multivariate testing is slightly different.

AB and Split tests refer to tests that measure larger changes on a given page. For example, a company with a long-form landing page might AB test the page against a new short version to see how visitors respond. In another example, a business seeking to find the optimal squeeze page might design two pages around different lead magnets and compare them to see which converts best.

Multivariate testing, on the other hand, focuses on optimizing small, important elements of a webpage, like CTA copy, image placement, or button colors. Often, a multivariate test will test more than two options at a time to quickly identify outlying winners. For example, a company might run a multivariate test cycling 6 different button colors on its most important sales page. With high enough traffic, even a 0.5% increase in conversions can result in a significant revenue boost.

Multivariate testing example graphic

Multivariate testing works through all possible combinations.

While most websites can run meaningful split tests, multivariate tests are typically reserved for bigger sites, as they require a large amount traffic to produce statistically significant results.

For a more in-depth look at multivariate testing, click here: Multivariate Testing: Promises and Pitfalls for High-Traffic Websites

7. How To Analyze Testing Results

After we’ve run our tests, it’s time to collect and analyze the results. My co-founder Joel Harvey explains how Conversion Sciences approaches post-test analysis below:

When you look at the results of an AB testing round, the first thing you need to look at is whether the test was a loser, a winner, or inconclusive.

Verify that the winners were indeed winners. Look at all the core criteria: statistical significance, p-value, test length, delta size, etc. If it checks out, then the next step is to show it to 100% of traffic and look for that real-world conversion lift.

In a perfect world you could just roll it out for 2 weeks and wait, but usually, you are jumping right into creating new hypotheses and running new tests, so you have to find a balance.

Once we’ve identified the winners, it’s important to dive into segments.

  • Mobile versus non-mobile
  • Paid versus unpaid
  • Different browsers and devices
  • Different traffic channels
  • New versus returning visitors (important to setup and integrate this beforehand)

This is fairly easy to do with enterprise tools, but might require some more effort with less robust testing tools. It’s important to have a deep understanding of how tested pages performed with each segment. What’s the bounce rate? What’s the exit rate? Did we fundamentally change the way this segment is flowing through the funnel?

We want to look at this data in full, but it’s also good to remove outliers falling outside two standard deviations of the mean and re-evaluate the data.

It’s also important to pay attention to lead quality. The longer the lead cycle, the more difficult this is. In a perfect world, you can integrate the CRM, but in reality, this often doesn’t work very seamlessly.

For a more in-depth look at post test analysis, including insights from the CRO industry’s foremost experts, click here: 10 CRO Experts Explain How To Profitably Analyze AB Test Results

8. How AB Testing Tools Work

The tools that make AB testing possible provide an incredible amount of power. If we wanted, we could use these tools to make your website different for every visitor to your website. The reason we can do this is that these tools change your site in the visitors’ browsers.

When these tools are installed on your website, they send some code, called JavaScript along with the HTML that defines a page. As the page is rendered, this JavaScript changes it. It can do almost anything:

  • Change the headlines and text on the page.
  • Hide images or copy.
  • Move elements above the fold.
  • Change the site navigation.

Primary Functions of AB Testing Tools

AB testing software has the following primary functions.

Serve Different Webpages to Visitors

The first job of AB testing tools is to show different webpages to certain visitors. The person that designed your test will determine what gets showed.

An AB test will have a “control”, or the current page, and at least one “treatment”, or the page with some change. The design and development team will work together to create a different treatment. The JavaScript must be written to transform the control into the treatment.

It is important that the JavaScript work in on all devices and in all browsers used by the visitors to a site. This requires a committed QA effort.

Conversion Sciences maintains a library of devices of varying ages that allows us to test our JavaScript for all visitors.

Split Traffic Evenly

Once we have JavaScript to display one or more treatements, our AB testing software must determine which visitors see the control and which see the treatments.

Typically, every other user will get a different page. The first will see the control, the next will see the first treatment, the next will see the second treatment and the fourth will see the control. Around it goes until enough visitors have been tested to achieve statistical significance.

It is important that the number of visitors seeing each version is about the same size. The software tries to enforce this.

Measure Results

The AB testing software tracks results by monitoring goals. Goals can be any of a number of measurable things:

  1. Products bought by each visitor and the amount paid
  2. Subscriptions and signups completed by visitors
  3. Forms completed by visitors
  4. Documents downloaded by visitors

Almost anything can be measured, but the most important are business-building metrics such as purchases, subscriptions and leads generated.

The software remembers which test page was seen. It calculates the amount of revenue generated by those who saw the control, by those who saw treatment one, and so on.

At the end of the test, we can answer one very important question: which page generated the most revenue, subscriptions or leads? If one of the treatments wins, it becomes the new control.

And the process starts over.

Do Statistical Analysis

The tools are always calculating the confidence that a result will predict the future. We don’t trust any test that doesn’t have at least a 95% confidence level. This means that we are 95% confident that a new change will generate more revenue, subscriptions or leads.

Sometimes it’s hard to wait for statistical significance, but it’s important lest we make the wrong decision and start reducing the website’s conversion rate.

Report Results

Finally, the software communicates results to us. These come as graphs and statistics.

AB Testing Tools deliver data in the form of graphs and statistics.

AB Testing Tools deliver data in the form of graphs and statistics.

It’s easy to see that the treatment won this test, giving us an estimated 90.9% lift in revenue per visitor with a 98% confidence.

This is a rather large win for this client.

Selecting The Right Tools

Of course, there are a lot of A/B testing tools out there, with new versions hitting the market every year. While there are certainly some industry favorites, the tools you select should come down to what your specific businesses requires.

In order to help make the selection process easier, we reached out to our network of CRO specialists and put together a list of the top-rated tools in the industry. We rely on these tools to perform for multi-million dollar clients and campaigns, and we are confident they will perform fo you as well.

Check out the full list of tools here: The 20 Most Recommended AB Testing Tools By Leading CRO Experts

9. How To Build An A/B Testing Team

The members of a CRO team graphic

The members of a CRO team.

Conversion Sciences offers a complete turnkey team for testing. Every team that will use these tools must have competent people in the following roles, and we recommend you follow suit in building your own teams.

Data Analyst

The data analyst looks at the data being collected by analytics tools, user experience tools, and information collected by the website owners. From this she begins developing ideas, or hypotheses, for why a site doesn’t have a higher conversion rate.

The data analyst is responsible for designing tests that prove or disprove a hypothesis. Once the test is designed, she hands it off to the designer and developer for implementation.

Designer

The designer is responsible for designing new components for the site. These may be as simple as creating a button with a different call to action, to completely redesigning a landing page for conversion.

The designer must be experienced enough to carefully design the changes we are testing. We want to change the element we are testing and nothing else.

Developer

Our developers are very good at creating JavaScript that manipulates a page without breaking anything. They are experienced enough to write JavaScript that will run successfully on a variety of devices, operating systems and browsers.

QA Tech

The last thing we want to do is break a commercial website. This can result in lost revenue and invalidate our tests. A good quality assurance person checks the JavaScript and design work to ensure it works on all relevant devices, operating systems and browsers.

Getting Started on AB Testing

Conversion Sciences invites all businesses to work AB testing into their marketing mix. You can start by working with us and then move the effort in-house.

Get started with our 180-day Conversion Catalyst program, a process designed to get you started AND pay for itself with newly discovered revenue.

One of these A/B testing strategies is right for your website, and will lead to bigger wins faster.

We have used analysis and testing to find significant increases in revenue and leads for hundreds of companies. For each one, we fashion unique AB testing strategies for each defining where to start and what to test.

However, we will virtually always build out that unique testing strategy off one of seven core strategies that I consider fundamenal to CRO success.

If you are beginning your own split testing or conversion optimization process, this is your guide to AB testing strategies. For each these seven strategies, I’m going to show you:

  1. When to use it
  2. Where on the site to test it
  3. What to test
  4. Pitfalls to avoid
  5. A real-life example

If you have more questions about your testing strategy, contact us and we’ll be more than happy to answer any questions I don’t cover here.

Let’s get started.

1. Gum Trampoline

We employ the gum trampoline approach when bounce rates are high, especially from new visitors. The bounce rate is the number of visitors who visit a site and leave after only a few seconds. Bouncers only see one page typically.

As the name implies, we want to use these AB testing strategies to slow the bouncing behavior, like putting gum on a trampoline.

We want more visitors to stick to our site and not bounce.

We want more visitors to stick to our site and not bounce.

When to Use It

You have a high bounce rate on your entry pages. This approach is especially important if your paid traffic (PPC or display ads) is not buying.

You have run out of paid traffic for a given set of keywords.

Where to Test

Most of your attention will be focused on landing pages. For lead generation, these may be dedicated landing pages. For ecommerce sites, these may be category pages or product pages.

What to Test

The key components of any landing page include:

  1. The offer that matches the ad, link or social post.
  2. The form that allows the visitor to take action. This may be just a button.
  3. The proof you use on the page that it’s a good decision.
  4. The trust you build, especially from third-party sources.
  5. The images you use to show the product or service. Always have relevant images.

Be Careful

Reducing bounce rate can increase leads and revenue. However, it can also increase the number of unqualified visitors entering the site or becoming prospects.

Example

In the following example, there is a disconnect between the expectation set by the advertisement (left side) and the landing page visitors see when they click on the ad (right side).

gum trampoline testing strategy

Paid ads are often a fantastic tool for bringing in qualified traffic, but if the landing page isn’t matched to the ad, visitors are likely to immediately bounce from the page rather than attempting to hunt for the treasure promised in the ad.

In order to apply gum to this trampoline, Zumba would need to take ad click-throughs to a page a featuring “The New Wonderland Collection”, preferably with the same model used in the ads. The landing needs to be designed specifically for the type of user who would be intrigued by the ad.

2. Completion Optimization

The Completion strategy begins testing at the call to action. For a lead-generation site, the Completion strategy will begin with the action page or signup process. For an ecommerce site, we start with the checkout process.

When to Use It

The Completion strategy is used for sites that have a high number of transactions and want to decrease the abandonment rate. The abandonment rate is the percentage of visitors who start a checkout or registration process, but don’t complete it. They abandon the process before they’re done.

Where to Test

This process starts at the end of the process, in the shopping cart or registration process.

What to Test

There are lots of things that could be impacting your abandonment rate.

  • Do you need to build trust with credit logos, security logos, testimonials or proof points?
  • Are you showing the cart contents on every step?
  • Do you require the visitor to create an account to purchase?
  • Do your visitors prefer a one-step checkout or a multi-step checkout?
  • Have you addressed your return policy?
  • Are you asking for unnecessary information?

Once you have reduced the abandonment rates, you can begin testing further upstream, to get more visitors into your optimized purchase or signup process.

Be Careful

Testing in the cart can be very expensive. Any test treatments that underperform the control are costing you real leads and sales. Also, cart abandonment often has its roots further upstream. Pages on your site that make false promises or leave out key information may be causing your abandonment rates to rise.

For example, if you don’t talk about shipping fees before checkout, you may have lots of people staring the purchase process just to find out what your shipping fees are.

Example

As we’ve talked about before, best practices are essentially guesses in CRO. We know, as a general rule, that lowering checkout friction tends to improve conversion rates and lower abandonment. But sometimes, it’s actually perceived friction that impacts the checkout experience above and beyond the real level of friction.

lesser-than-strategy

For example, one of our clients upgraded their website and checkout experience in accordance with best practices.

  • The process was reduced from multiple steps to a single step.
  • The order is shown, including the product images.
  • The “Risk-free Guarantee” at the top and “Doctor Trusted” bug on the right reinforces the purchase.
  • Trust symbols are placed near the call-to action button.
  • All costs have been addressed, including shipping and taxes.

The new checkout process should have performed better, yet it ended up having a significantly higher bounce rate than the previous checkout process.

Why?

After looking at previous checkout experience, we realized that despite it actually requiring more steps (and clicks) on the part of the user, the process was broken up in a such a way that the user perceived less friction along the way. Information was hidden behind each step, so that they user never ultimately felt the friction.

Step #1:

Paypal payment method step 1

Paypal payment method step 1

Step #2:

Paypal billing information

Paypal billing information

This is just one of many reasons running AB tests is mandatory, and it’s also a good example of how beneficial it can be for certian business to start with the checkout process, as dicated by the LT strategy.

3. Flow Optimization

The Flow approach is essentially the opposite of the Completion strategy. With this strategy, you’re trying to get more visitors into the purchase process before you start optimizing the checkout or registration process.

When to Use It

This strategy is typically best for sites with fewer transactions. The goal is to increase visits to the cart or registration process so we start Completion testing at the bottom of the funnel.

Where to Test

Testing starts on entry pages, the pages on which visitors enter the site. This will typically include  the home page and landing pages for lead-generating sites. For ecommerce sites category pages and product pages get intense scrutiny to increase Add to Cart actions.

What to Test

With this strategy, we are most often trying to understand what is missing from the product or service presentation.

  • What questions are going unanswered?
  • What objections aren’t being addressed?
  • What information isn’t presented that visitors need?
  • Is the pricing wrong for the value presented?

We will test headlines, copy, images and calls to action when we begin the GT strategy.

Be Careful

Even though we aren’t optimizing the checkout or registration process, avoid testing clicks or engagement metrics. Always use purchases or leads generated as the primary metric in your tests. It’s too easy to get unqualified visitors to add something to cart only to see abandonment rates skyrocket.

Example

Businesses that benefit from the GT strategy typically need to relook at their central value proposition on poorly converting landing pages.

For example, when Groove decided it’s 2.3% homepage conversion rate wasn’t going to cut it anymore, it began the optmization process by revamping its value proposition. The existing page was very bland, with a stock photo and a weak headline that didn’t do anything to address the benefits of the service.

Groove SaaS and eCommerce Customer Support Value Proposition screen image

Groove SaaS and eCommerce Customer Support Value Proposition

The new page included a benefits-driven headline and a well-produced video of a real customer describing his positive experience with Groove. As a result, the page revamp more than doubled homepage conversions.

Groove created a 'copy first' landing page based on feedback from customers

Groove created a ‘copy first’ landing page based on feedback from customers

The point here is that fixing your checkout process isn’t going to do you a ton of good if you aren’t getting a whole lot of people there in the first place. If initial conversions are low, it’s better to start with optimizing your core value proposition than go fishing for problems on the backend of your funnel.

4. Minesweeper

Minesweeper optimization strategies use clues from several tests to determine where additional revenue might be hiding.

Minesweeper optimization strategies use clues from several tests to determine where additional revenue might be hiding.

Some sites are like the Minesweeper game that has shipped with Windows operating systems for decades. In the game you hunt for open squares and avoid mines. The location of minds is hinted at by numbered squares.

In this game, you don’t know where to look until you start playing. But it’s not random. This is like an exploratory testing strategy.

When to Use It

This testing strategy is for sites that seem to be working against the visitor at every turn. We see this when visit lengths are low or people leave products in the cart at high rates. Use it when things are broken all over the site, then dive into one of the other strategies.

As testing progresses, we get clues about what is really keeping visitors from completing a transaction. The picture slowly resolves as we collect data from around the site.

Where to Test

This strategy starts on the pages where the data says the problems lie.

What to Test

By its nature, it is hard to generalize about this testing strategy. As an example, we may believe that people are having trouble finding the solution or product they are looking for. Issues related to findability, or “discoverability” may include navigation tests, site search fixes, and changes to categories or category names.

Be Careful

This is our least-often used strategy. It is too scattershot to be used frequently. We prefer the data to lead us down tunnels where we mine veins of gold.

However, this is the most common of optimization strategies used by inexperienced marketers. It is one of the reasons that conversion projects get abandoned. The random nature of this approach means that there will be many tests that don’t help much and fewer big wins.

Example

You wouldn’t expect a company pulling in $2.1 Billion in annual revenue to have major breaks in it’s website, yet that’s exactly what I discovered a few years back while attempting to make a purchase from Fry’s Electronics. Whenever I selected the “In-store Pickup” option, I was taken to the following error screen.

image.png

This is one of the most important buttons on the site, doubly so near Christmas when shipping gifts becomes an iffy proposition. Even worse, errors like this often aren’t isolated.

While finding a major error like this doesn’t necessarily mean you need to begin the Minesweeper optimization strategy, it’s always important to fix broken pieces of a site before you even begin to look at optimization strategies.

5. Big Rocks

Adding new features -- "big rocks" -- to a site can fundamentally change its effectiveness.

Adding new features — “big rocks” — to a site can fundamentally change its effectiveness.

Almost every site has a primary issue. After analysis, you will see that there are questions about authority and credibility that go unanswered. You might find that issues with the layout are keeping many visitors from taking action.

The Big Rocks testing strategy adds fundamental components to the site in an effort to give visitors what they are looking for.

When to Use It

This strategy is used for sites that have a long history of optimization and ample evidence that an important component is missing.

Where to Test

These tests are usually site-wide. They involve adding fundamental features to the site.

What to Test

Some examples of big rocks include:

  • Ratings and Reviews for ecommerce sites
  • Live Chat
  • Product Demo Videos
  • Faceted Site Search
  • Recommendation Engines
  • Progressive Forms
  • Exit-intent Popovers

Be Careful

These tools are difficult to test. Once implemented, they cannot be easily removed from the site. Be sure you have evidence from your visitors that they want the rock. Don’t believe the claims of higher conversions made by the Big Rock company salespeople. Your audience is different.

Example

A good example of the Big Rocks strategy in action comes from Adore Me, a millennial-targeted lingerie retailer that catipulted it’s sales by installing Yotpo’s social-based review system. The company was relying primarily on email and phone for customer feedback and identified ratings and user reviews as its “big rock” to target.

The revamped customer engagement system helped spawn tens of thousands of new reviews and also facilitated a flood of user-generated content on sites like Instagram without Adore Me even having to purchase Instagram ads. Type in #AdoreMe and you’ll find thousands of unsponsored user-generated posts like these:

adoreme

This is a great example of a how certain AB testing strategies can help facilitate different business models. The key is identify the big opportunities and then focusing on creating real, engaging solutions in those areas.

6. Big Swings

Taking big swings can lead to home runs, but can also obscure the reasons for wins.

Taking big swings can lead to home runs, but can also obscure the reasons for wins.

A “Big Swing” is any test that changes more than one variable and often changes several. It’s called a big swing because it’s when we swing for the fences with a redesigned page.

When to Use It

Like the Big Rock strategy, this strategy is most often used on a site that has a mature conversion optimization program. When we begin to find the local maxima for a site, it gets harder to find winning hypotheses. If evidence suggests that a fundamental change is needed, we’ll take a big swing and completely redesign a page or set of pages based on what we’ve learned.

Sometimes we start with a Big Swing if we feel that the value proposition for a site is fundamentally broken.

Where to Test

We often take big swings on key entry pages such as the home page or landing pages. For ecommerce sites, you may want to try redesigning the product page template for your site.

What to Test

Big Swings are often related to layout and messaging. All at once, several things may change on a page:

  • Copy
  • Images
  • Layout
  • Design Style
  • Calls to Action

Be Careful

Big swings don’t tell you much about your audience. When you change more than one thing, the changes can offset each other. Perhaps making the headline bigger increased the conversion rate on a page, but the new image decreased the conversion rate. When you change both, you may not see the change.

Example

Neil Patel is one of those marketers who likes to use the Big Swings strategy on a regular basis. For example, he has tried complete homepage redesigns for Crazy Egg on several occasions.

The first big redesign changed things from a short-form landing page to a very long-form page and resulted in a 30% increase in conversions.

crazy-eggs-challenger-homepage

The next big redesign scrapped the long page for another short page, but this time with concise, targeted copy and a video-driven value proposition. This new page improved conversions by another 13%.

crazyeggnewhomepage

And of course, Neil didn’t stop there. Crazy Egg’s homepage has changed yet again, with the current iteration simply inviting users to enter their website’s URL and see a Crazy Egg’s user testing tools in action on their own site. How well is it converting? No clue, but if I know Neil, I can promise you the current page is Crazy Egg’s highest performer to date.

free-trial

Sometimes the only way to improve conversions is to swing for the fences and try something new.

7. Nuclear Option

I’ll mention the nuclear option here, which is a full site redesign. There are only two good reasons to do an entire site redesign:

  1. You’re changing to a new backend platform.
  2. You’re redoing your company or product branding.

All other redesign efforts should be done with conversion optimization tests, like Wasp Barcode.

We even recommend creating a separate mobile site rather than using responsive web design.

You should speak to a Conversion Scientist before you embark on a redesign project.

Which A/B Testing Strategy Is Right For You?

Every website is different. The approach you take when testing a site should ultimately be determined by the data you have. Once you settle on a direction it can help you find bigger wins sooner.


21 Quick and Easy CRO Copywriting Hacks to Skyrocket Conversions

FREE: Click to Download

21 Quick and Easy CRO Copywriting Hacks

Keep these proven copywriting hacks in mind to make your copy convert.

  • 43 Pages with Examples
  • Assumptive Phrasing
  • "We" vs. "You"
  • Pattern Interrupts
  • The power of Three

Photo Credit: megankhines via Compfight cc, Genista via Compfight cc, chemisti via Compfight cc

Why do we have to work so hard to get our persuasive messages heard? Why is direct response copywriting so difficult? Why don’t people read?

This presentation from ConversionSUMMIT 2013 and ConversionJAM 3 introduces you to two “bouncers” in the human brain that keep marketing messages from penetrating and tells you what to do about them.

Writing Killer Conversion Copy Live

 



 

Writing Killer Conversion Copy Slides

 


 

Brian Massey at Conversion SUMMIT

Invite Brian to speak and entertain at your next event.